12 research outputs found

    Design and manufacturing of a Selective Laser Sintering test bench to test sintering materials

    Get PDF
    The goal of this project is to design and build a prototype of recoating system for a laser cutting machine to turn it into a selective laser sintering printing machine. This prototype will be used to study new sintering materials and to design, if decided, a SLS 3D printing Machine (Selective Laser Sintering). This project has been developed in the installations and funded by Fundació CIM. The project develops the mechanical design and the electronic system design. Both parts are explained on this paper, so new users can use the machine and can understand the system. With this paper, it is expected that it can be improved in a future to test other parameters and configurations. The paper is divided in three basic blocks that are summed up here: The first block is an introduction to the 3D printing technologies. The most used of them are explained and selective laser sintering is explained in deep. With this block the reader can understand why it is important to develop the SLS technology and what has to be done to improve the machines and the technology. The second block is a discussion on the mechanical design of the machine. The general idea of the machine is explained so the user can understand why the machine is designed in this way. After that, each part is detailed to see how the different mechanical challenges where overtaken. At the end of the block, there is a small calculations section needed on the electronic part. The third block is an extensive explanation of the electronic system that controls and moves the machine. In that block, the different components are explained so the user can understand its basics working principles. It is also explained how the selection of the electronic components was done. Then everything is put together to see the whole electronic system. Along with this paper, there are annexes that provide some extra information for the reader. One of this annexes refers to the mechanical part and the other one has some datasheets and coding for the electronic section. The whole design has been done in SOLIDWORKS cad software and its electric extension ELECWORKS. The programming job was done with Arduino compiler

    Design and manufacturing of a Selective Laser Sintering test bench to test sintering materials

    No full text
    The goal of this project is to design and build a prototype of recoating system for a laser cutting machine to turn it into a selective laser sintering printing machine. This prototype will be used to study new sintering materials and to design, if decided, a SLS 3D printing Machine (Selective Laser Sintering). This project has been developed in the installations and funded by Fundació CIM. The project develops the mechanical design and the electronic system design. Both parts are explained on this paper, so new users can use the machine and can understand the system. With this paper, it is expected that it can be improved in a future to test other parameters and configurations. The paper is divided in three basic blocks that are summed up here: The first block is an introduction to the 3D printing technologies. The most used of them are explained and selective laser sintering is explained in deep. With this block the reader can understand why it is important to develop the SLS technology and what has to be done to improve the machines and the technology. The second block is a discussion on the mechanical design of the machine. The general idea of the machine is explained so the user can understand why the machine is designed in this way. After that, each part is detailed to see how the different mechanical challenges where overtaken. At the end of the block, there is a small calculations section needed on the electronic part. The third block is an extensive explanation of the electronic system that controls and moves the machine. In that block, the different components are explained so the user can understand its basics working principles. It is also explained how the selection of the electronic components was done. Then everything is put together to see the whole electronic system. Along with this paper, there are annexes that provide some extra information for the reader. One of this annexes refers to the mechanical part and the other one has some datasheets and coding for the electronic section. The whole design has been done in SOLIDWORKS cad software and its electric extension ELECWORKS. The programming job was done with Arduino compiler

    An adaptive floating node based formulation for the analysis of multiple delaminations under quasi-static loading

    Get PDF
    A novel and efficient numerical formulation for the modelling of multiple delaminations growth in laminated composite materials subjected to quasi-static loading is presented. The proposed formulation alleviates the high computational cost associated with models featuring cohesive elements by using a novel Adaptive Refinement Scheme and an Adaptive Floating Node Method Element to refine the model effectively during the analysis without modifying the global finite element connectivity. The formulation has been implemented in a MATLAB finite element code and validated with single and multiple delamination numerical models with varying mode mixities. The new formulation provides accurate results comparable to standard fully refined finite element models while drastically lowering the computational time of the analysis.Aerospace Structures & Computational Mechanic

    An adaptive floating node based formulation for the analysis of multiple delaminations under high cycle fatigue loading

    Get PDF
    A novel efficient numerical formulation for the analysis of multiple fatigue-driven delamination cracks is presented. A cohesive zone model is used in combination with an Adaptive Refinement Scheme (ARS) and an Adaptive Floating Node Method (A-FNM) element that refine the model effectively during the analysis. Novel techniques are proposed to track the positions of multiple crack tips and calculate the mode decomposed energy release rates for the individual crack tips using the J-integral. The method has been implemented in a Matlab finite element code and validated with single and multiple delamination cases with varying mode mixities. Comparisons with theoretically based predictions and available experimental data showcase the high accuracy of the method. The presented method lowers the computational time compared to standard, fully refined finite element models by a factor of 4–5.Aerospace Structures & Computational Mechanic

    Delamination toughening of composite laminates using weakening or toughening interlaminar patches to initiate multiple delaminations: A numerical study

    Get PDF
    A numerical study on toughening laminated composite materials against delamination by initiating multiple interlaminar cracks is presented. Different configurations of interface toughening and weakening patches, that modify the interface properties at selected locations, are investigated as a way to trigger multiple delaminations. Both interface toughening and weakening patches can be configured to toughen the laminated material by initiating multiple delaminations. The initiation of multiple delaminations and the increase in toughness depend on the interface strengths and toughness of the patches. The main mechanisms behind the initiation of multiple delaminations for both cases are presented. An adaptive refinement method implemented within a Matlab Finite Element Analysis code that models the interfaces of the laminate with cohesive elements is used for the analyses. The adaptive refinement framework allows efficient analysis of multiple delaminations with very fine meshes at the wake of the crack tips. A discussion on the overall performance of the toughening concept, and the main parameters affecting the results, i.e. the length of the interface toughening or weakening patches, the distance of the substrate between the affected interfaces, and the material's mechanical properties, is carried out. The results presented in the paper show that a toughening effect against delamination can be achieved using interface toughening or weakening patches to onset multiple delaminations.Aerospace Structures & Computational Mechanic

    Numerical study of the delamination toughening effect of weakening and toughening patche

    No full text
    A numerical study on the feasibility of using patches of interface weakening or toughening material to trigger multiple delaminations toughening laminated composite structures against delamination is presented. The studies use an adaptive refinement formulation that uses cohesive elements to model delamination initiation and propagation. A DCB specimen is loaded under displacement control with two cohesive interfaces and a single pre-crack is introduced in one of them. The studies show that multiple delaminations can be initiated in the secondary originally uncracked interface by placing interface toughening patches at the main pre-cracked interface or interface weakening patches at the secondary one. The energy dissipation significantly increases compared to a standard DCB specimen featuring a single delamination.Aerospace Structures & Computational Mechanic
    corecore